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The need tofilter functions defined on the sphere arises in a number of applications,
such as climate modeling, electromagnetic and acoustic scattering, and several other
areas. Recently, it has been observed that the problem of uniform resolution filtering
on the sphere can be performed efficiently via the fast multipole method (FMM) in
one dimension. In this paper, we introduce a generalization of the FMM that leads
to an accelerated version of the filtering process. Instead of multipole expansions,
the scheme uses special-purpose bases constructed via the singular value decompo-
sition of appropriately chosen submatrices of the filtering matrix. The algorithm is
applicable to a fairly wide class of projection operators; its performance is illustrated
with several numerical examplesg 1998 Academic Press

Key Wordssingular value decompositions; fast algorithms; spherical harmonics.

1. INTRODUCTION

The fast multipole method (FMM) [6] is a® (n) algorithm for calculating electrostatic
potentials ah points due to a set afi charges. Variants of it exist in one [3, 15], two
[6, 9], and three [7] dimensions. While the two- and three-dimensional variants have fo
direct uses, the one-dimensional version is normally used as a step in the solution of
numerical problems (see, for example, [3]). One such use of the one-dimensional F
has recently been published by Jakob-Chien and Alpert [10], in an algorithm for the re
uniform resolution filtering and interpolation of functions on the sphere; that algorithm |
uses in the solution of partial differential equations on the sphere [13], in fast algorithms
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GENERALIZED 1D FMM AND SPHERICAL FILTER 595

electromagnetic scattering [4], and in several other environments. In this paper, we des
a version of the one-dimensional FMM which has been generalized so as to calc
not only electrostatic potentials, but a wide class of similar kernels, and we describ
accelerated version of the algorithm of [10] in which two subroutine calls to the origir
one-dimensional FMM are replaced by one call to the generalized FMM.

Formally, this paper describes an algorithm for the following task: givansam matrix
P of a certain structure and given a desired accutacgmpress so that its product with a
vector can be efficiently computed to that accuracy. The structure the algorithm requir:
P is as follows: there must exist numbetis< x; < - -+ <Xpandy; <y, < --- <Yy, such
that, roughly speaking, any submatrix®fwhich is separated in index space from the lin
Xi = y; by a distance greater than its own size has a rank less than some (reasonably
numberr, to the precisior; the CPU time taken by the algorithm for multiplication Bf
by a vector is the® (nr). (A rigorous accounting of the execution time of the algorithm i
somewhat complicated and is given in Section 3.2.6.) One mts{ p;j] which has such
a structure is given by the formula

1
. — 1
Pij =X 1)

and is the matrix whose multiplication by a vector is implemented by the original ot
dimensional versions of the FMM.

This paper is arranged as follows. Section 2 briefly reviews numerical tools used by
algorithm. Section 3 describes the generalized FMM in its basic form. Section 4 descr
modifications to the algorithm of Section 3, the principal one of which is the diagonalizat
of roughly a third of the interaction matrices. Section 5 contains numerical results
the generalized FMM applied to the matrix (1). Section 6 describes modifications to
algorithm of [10] which incorporate the generalized FMM. Finally, Section 7 examin
generalizations of the schemes presented in this paper.

2. NUMERICAL PRELIMINARIES

2.1. Singular Value Decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, gi
for the case of real matrices by the following lemma (see, for instance, [14] for more dete

LEMMA 2.1. Forany nx m real matrix A there exist an integer,@n nx p real matrix
U with orthonormal columnsan mx p real matrix V with orthonormal columngnd a
p x p real diagonal matrix S=[sj] whose diagonal entries are nonnegatigeich that
A=USV*andthatg >s it foralli=1,...,p—1.

The diagonal entries; of Sare called singular values &, the columns of the matrix
V are called right singular vectors; the columns of the mditriare called left singular
vectors.

2.2. Least Squares Approximation

This section contains three lemmas on the least squares approximation of matrices, p
in a more general setting in [15]. In this section and in the remainder of the Bagewill
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denote the space of all realx m matrices, and the matrix norm used will be the Schur «
Frobenius norm; that is, for anx m real matrix A= [a;;],

1Al = 2

LEMMA 2.2. Suppose A is a g n real matrix B is an mx k real matrix and C
is a px k real matrix for some mp, n, and k. Let A=U,S,V} be a singular value
decomposition of Aand let B=Uz SV be a singular value decomposition of B. Letr
be the number of nonzero singular values oBAd let g be the number of nonzero singulal
values of B. Let | and Vi consist of the first r columns &fx andV, respectivelyand
let Sy consist of the first r rows of the first r columns®f. Let Ug and \i consist of the
first g columns oblg and Vg, respectivelyand let & consist of the first g rows of the first
g columns 0. Then the solutioX of the minimization problem

Xrgﬂipm |AXB—C]J, 3
is given by
X = V,StUiC VS tU. 4)
Furthermore
IAXB —C|l = [IC — U,UC Vg V5lI. ®)

The following lemma provides a bound, in certain situations, on the error of the appr
imation given by Lemma 2.2.

LEMMA 2.3. Under the conditions of Lemnia2, suppose that there exist anxnk
matrix D and an px m matrix E such that

IAD —C|l < &1 (6)
and
[EB—CJ < e )
Then
|AXB — C| < &1 + &2. (8)

As shown by the following lemma, the error bound of Lemma 2.3 also applies whe
different formula for the minimizing matrix is used.

LEMMA 2.4. Under the conditions of Lemnfa3, let the nx m matrix Y be given by
the formula

Y = DV U5, 9)
Then

IAY B— C| < &1+ é2. (10)
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3. BASIC FMM

This section describes the generalized FMM of this paper. It is described as a s
modifications to the FMM of [6, 3]; the reader is assumed to be familiar with that algorith

The overall FMM structure of an upward pass for creation of far field expansions, |
lowed by a pass which computes local expansions from far field expansions, followet
a downward pass which propagates local expansions to lower levels and evaluates th
retained. However, all the expansions are different, being based on singular value deco
sitions rather than on analytical formulae. In addition, the hierarchical subdivision sche
is different, being performed according to matrix indices rather than according to p
locations. (The expansions used permit almost any subdivision scheme, whether ad:
as in [15], or nonadaptive as in [3]; the present scheme was chosen solely for its simplic

3.1. Subdivision Scheme
The hierarchical subdivision is performed on column indices of the mBiras follows:

e Each interval of column indices, if it is divided, is divided into two intervals of equ
size (or differing in size by one, if the number of indices in the interval is odd).

e The subdivision is uniform; either all the intervals at any given depth of the tree
subdivided, or none are.

e The subdivision process continues until the lowest-level intervals are as close as
sible to a user-chosen size.

For each intervalj, j»] of column indices produced by the above process, a correspo
ing interval |1, io] of row indices is chosen such that the portiorPoadddressed by the two
intervals of indices contains as much as possible of thexirey;. The precise criterion
used to choose the interva [i,] is that it should be the interval of maximal size such the

(Xiifl + X]1)/2 SV < <Y, < (Xiz + Xj2+1)/2- (11)

(If xj,—1 or Xj,41 does not exist, the corresponding inequality in the above equation is
enforced. The quantities, <X, < --- <Xm andy; <y, < --- <Y, Were, in the present
implementation, user-provided; in an environment where they are not readily available,
can be determined by numerically searchindpr areas of high numerical rank.)

3.2. Expansions

This section describes the expansions used in the generalized FMM. Submatites
will be designated as followd?, , denotes the portion @ whose column indices are m
and whose row indices are & wherea andb are either intervals of indices inf®, or sets
thereof.

For each interval, the FMM divides the intervals at the same depth in the tree into
sets:

e 1. Thenear fieldregion, consisting of the interval itself and the two adjacent interve
at the same depth in the tree of intervals.

e 2. Thefar field region, consisting of all remaining intervals at the same depth in t
tree. We denote the far field region of thgh interval by F;.
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A third set is also required: thateraction listof an intervali is the set of intervals at the
same depth in the tree which are in the far field ahd which are not in the far field of the
parent ofi.

3.2.1. Far-field expansions.The original FMM [6] relies on the fact that the electrostatic
potential due to a set of charges can be represented to high precision, at points distan
those charges, by a multipole expansion of relatively few terms. In the generalized F!
described in this paper, the output (no longer necessarily the electrostatic potential, alth
we will continue to use the terms “potential” and “charge” for convenience) does not nee
be describable by a multipole expansion, but can be describable by an arbitrary expar
provided that the expansion coefficients are linear functions of the charge magnitt
and that the potential is a linear function of the expansion coefficients. The creation
evaluation matrices for this expansion, which we will call a far-field expansion, do not nq
to be furnished as such by the user; they are computed from the rRatiging the singular
value decomposition. This computation is performed for each intefealvhich a far-field
expansion is needed and is as follows: he m; be the dimensions of the matri ;,
let the singular value decomposition Bf ; be denoted by SV*, the number of singular
values byp, and the singular values Isy>s, > --- > s3. Let p; be the minimum integer
such that

p
nym
§ ST < &?|PIP——. (12)
A nm
j=pi+1

Let them; x p; matrix V; consist of the firsty columns ofV and let thep; x nj matrix

E;j consist of the firstp; columns of the produde S. We will refer toVj* as the far-field
expansion creation matrix for inteniadnd toE; as the far-field evaluation matrix; the latter
is not used explicitly in the algorithm.

As shown in [8], the produdg; V;* is, among matrices of rang;, the closest approxima-
tion to the matrixPg, ; in the norm (2). Thus the number of terms in any known expansi
for Pg, i (such as a multipole expansion) is an upper bound for the number of {grims
the far-field expansion of the same accuracy computed as above.

3.2.2. Local expansions.Using far-field expansions alone, &n - logn) version of
the FMM can be produced (for an overview of the various versions see [7]) Ohg
version of the FMM requires additional numerical machinery, namely local expansic
which approximate the potential on aregion due to charges on distant regions. In the orit
FMM, local expansions were harmonic expansions; in the generalized FMM, creation
evaluation matrices for local expansions are computed from the niatrsing the singular
value decomposition, as follows. Lt x m; be the dimensions of the matriX  ; let the
singular value decomposition & , be denoted byJ SV*, the number of singular values
byf, and the singular values lBy>s, > ... > . Letr; be the minimum integer such that

r / /
n:m;
> s <e?PIIP T (13)
. nm
j=ri+1

Let them{ x r; matrix U; consist of the first; columns ofU. We will refer toU; as the
local expansion evaluation matrix for interval
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3.2.3. Far-field translation matrices.The FMM does not compute far-field expansion:
for intervals at high levels in the tree directly from the charges in the interval, but rat
computes them from far-field expansions at lower levels. Associated with each inten
whose parent intervgl has a far-field expansion is a translation maffixvhich takes as
input a far-field expansion fdarand produces as output a far-field expansionjfarhich
evaluates to the same potential. Mt be the far-field creation matrix for interval and
let V}*; be the far field creation matrix for interval with columns deleted such that it
only accepts input from the intervalClearly the translation matri¥ should be such that
for any m;-vector g, the vectorT; V*q is as close as possible, by some measure, to t
vectorV/';q. The measure we use is the least squares measure; in parfi¢utachosen
so as to minimize the quantify’; — Ti V*||. The formula for such minimization is given
by Lemma 2.2; using the fact that the singular value decomposition of any matrix v
orthogonal columns consists of that matrix multiplied by two identity matrices, it reduc
in this case to

Ti =V V. (14)

We will refer toT; as the far-field expansion translation matrix for inteival

Lemma 2.4 gives a bound for the error associated with using the translation Matri
Supposée; « andE; i are matrices which take as input the far-field expansions on intprve
and on interval, respectively, and use them to evaluate the potential on some other inte
k and are such that

Pk — EjkVill <e1 (15)
Pk — BVl < e2. (16)

Using (15), (16), and Lemma 2.4, we get that
[Pk —EjxTiVi*ll < &1+ e (17)

3.2.4. Local expansion translation matriceslhe FMM does not evaluate local expan-
sion for intervals at high levels in the tree directly at each of the points at which the poter
is to be evaluated, but rather transforms them into local expansions for intervals at Ic
levels. Associated with each intenialwhose parent intervgl has a local expansion, is a
translation matriXM; which takes as input a local expansionjoand produces as output a
local expansion on. M; is computed as follows. Lét; be the local expansion evaluation
matrix for intervali, and letU;; be the local expansion evaluation matrix for interyal
with rows deleted so that it only produces output on the intarv@learly the translation
matrix M; should be such that for amy-vectora, the vectotJ; M;« is as close as possible,
by some measure, to the vectdy;«. The measure we use is the least squares measure
particular,M; is chosen so as to minimize the quantity; i —U; M; ||. The formula for such
minimization is given by Lemma 2.2. Using the fact that the singular value decomposi
of any matrix with orthogonal columns consists of that matrix multiplied by two identi
matrices, it reduces in this case to

M = UjUj ;. (18)
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The error incurred by usinlyl; is bounded by Lemma 2.4; the analysis is almost identic
to that presented in Section 3.2.3 for the far-field translation m@trand is omitted. We
will refer to M; as the local expansion translation matrix for interival

3.2.5. Far-field to local interaction matrices A far-field to local interaction matrik; ;
takes as input a far-field expansion on an intenaald produces as output a local expansio
on another interva). Such matrices are constructed only for pairs of interalg) such
that j is in the interaction list of. The matrixE;; should be such that for ath; -vectorsq
the producU; E; ; V*q is as close as possible, by some measure, to the préjugt We
chooseEj ; so as to minimize the quantity

eii =V E;i Vi = Pjill. (19)

The formula for such minimization is given by Lemma 2.2; using the fact that the s
gular value decomposition of any matrix with orthogonal columns consists of that ma
multiplied by two identity matrices, it reduces in this case to

Eji=U/PjiVi. (20)

Lemma 2.3, combined with (12) and (13), gives a boundfer

n; m; n/ my
gji <ellP] (Mﬁ—l—\/ﬁ). (21)

We will refer to E; ; as the far field to local interaction matrix from intervab intervalj.

Remark 3.1. A brief inspection of the above formulae for the creation, translatio
and evaluation matrice8J;}, {Vi}, {Ti}, {M;}, and{E;;} shows that the same matrices
are generated, in different roles, if the input matrix to the algorithm is the adpirdf
P, provided that the hierarchical subdivision is retained: the far field expansion crea
matrices forP are identical to the local expansion evaluation matricesPfgrand vice
versa, the far field translation matrices #mare identical to the local expansion translatiot
matrices forP*, and vice versa; and the far field to local matricesFaaire the adjoints of
the far field to local matrices fdP*. Thus the matrices precomputed ican also be used
for multiplying by P*.

3.2.6. Execution time.The FMM performs one matrix—vector multiplication for eack
instance of the matricgd); }, {Vi}, {Ti}, {M;}, and{E; ; }. Thus the CPU time which it con-
sumes is proportional to the total number of elements in all instances of the matrices.
sizes of the matrices depend on the numerical ramlendr;, as defined by (12) and (13).
We analyze the execution time further only in the case that all those ranks are all boul
by some numbar. In that case, the computation of far-field expansions from the input tak
O(mr) time, the computation of the output from local expansions té€kegs ) time, and the
computations of expansions from other expansions @#a ?) time, wherek is the total
number of intervals produced by the subdivision process. Assumingtsgiroportional to
n, the total execution time i® (nr + kr?). The quantitynr + kr? is minimized (with respect
tok) whenn/kis equal ta . Sincen/k s proportional to the size of the lowest-level intervals
the minimum execution time occurs when the size of the lowest-level intervals is prof
tional tor, with the constant of proportion depending on the details of the computer involv
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4. TECHNICAL IMPROVEMENTS

4.1. Diagonalization of Far Field to Local Matrices

A certain amount of freedom is present in the definition of far field and local expansic
the results of the FMM are clearly unaffected if the far-field expansion creation nvitrix
for anintervali is multiplied on the left by any orthogonal matiy, its far field translation
matrix T; is multiplied on the right byV*, and its far field to local matriceis; ; for all j are
multiplied on the right bywW*. Similarly, the results of the FMM are unaffected if the loca
expansion evaluation matrit; for an interval is multiplied on the right by any orthogonal
matrix W, its local expansion translation mati¥; is multiplied on the left byw*, and its
far field to local matricess; ; for all j are multiplied on the left byv*.

We use this freedom to diagonalize one of the (usually three) far field to local matrices
each interval. Suppose thii ; for some interval$ andj is the matrix to be diagonalized.
Letits singular value decomposition be denotedSy = U SV*. Then we multiplyV;* on
the right byV*, and multiplyU; on the left byU, also changing translation matrices an
far field to local matrices as indicated in the previous paragraph so that the results o
FMM are unaffected.

Far field to local matrices are chosen for diagonalization in such a way that each expat
redefined by this process is redefined only once. The scheme used is as follows: each le
intervals is divided into blocks of four adjacent intervals; inside each block the interacti
chosen for diagonalization are+% 3, 2— 4, 3— 1, and 4— 2 (as depicted in Fig. 1).

4.2. Splits by Factors Other Than Two

Another modification which was made to the above FMM is to split intervals into mc
than two pieces. This clearly can be done to any interval, at any level in the tree. Howe
the only use which was made of this flexibility was to alter the top of the tree of interv
slightly, so as to control better the size of the lowest-level intervals in the tree. The
interval was split either into two, three, or five pieces; if three, its subintervals might e

1 2 3 4

FIG. 1. Far field to local operators which are diagonalized.
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TABLE |
Double Precision Timings for the Ix Kernel

Times (seconds) Memory
Error Ratio REAL*8

N (L2 norm) Init Eval Direct eval/lFFT spaces)
64 0.35477E-15 0.070 0.001 0.001 5.21 3852
128 0.92042E-15 0.820 0.003 0.005 7.31 10407
256 0.23512E-14 6.620 0.007 0.019 8.93 26205
512 0.16144E-13 39.700 0.013 0.073 5.60 52263
1024 0.21925E-13 214.710 0.031 0.730 4.16 117881

be splitinto three parts, the remaining intervals in the tree all being split into two parts. T
permits a choice of the size of the lowest-level intervals not onty/@f for anyk, but also
of n/(3 x 26),n/(5 x 2), orn/(9 x 2%).

5. NUMERICAL RESULTS

For comparison against the older one-dimensional FMMs of [3, 15], the generali
FMM was applied to the Ax kernel; that is, the input matriR =[p;;] was given by (1).
Timings for various numbers of pointsare listed in Tables | and Il for double and single
precision (that is, with the parameteset to 10 and 10°7). In all cases, the parameter
m was set to be equal 1o, the nodegx;} were identical to the noddy; }, being slightly
perturbed equispaced nodes. All timings were performed on a Sun Sparcstation 10 in d
precision (FortraREAL#*8) arithmetic. Also included in the tables are ratios of the executic
time of the algorithm to the execution time of a standard SLATEC FFT ofrsize

From the timings, it can be seen that the generalized FMM is similar in execution sp
to the best previous 1D FMM (that of [15]) known to the authors. Itis, however, far inferi
to the FMMs of [3, 15] in the time spent in the precomputation stage; initialization tim
for those algorithms did not exceed execution time by more than a factor of 10, wherea
initialization time for the generalized FMM exceeds the execution time by factors of 10C
Effectively, it limits the usefulness of the procedure of this paper to problems of suffici

importance that the initialization data can be precomputed and stored. The following se
discusses one such case.

TABLE Il
Single Precision Timings for the Ix Kernel

Times (seconds) Memory
Error Ratio REAL*8

N (L2 norm) Init Eval Direct evallFFT spaces)
64 0.25040E-08 0.040 0.001 0.001 4.74 3500
128 0.23352E-07 0.440 0.002 0.005 5.90 8465
256 0.19125E-06 3.580 0.005 0.018 6.13 17803
512 0.64886E-06 22.710 0.010 0.074 4.03 36911
1024 0.28910E-06 124.690 0.021 0.590 2.77 79407
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6. APPLICATION TO FILTERING

This section describes a use of the generalized FMM, in an algorithm recently
lished by Jakob-Chien and Alpert [10] for uniform resolution filtering of functions on tf
sphere. Their algorithm as a whole performs the following task: given nunflgxso;),
i=1...,1;j=1,...,J, suchthat

K

f@gi0) =Y > f"Vii.6), (22)

n=0 m=-n
computes number§(¢;, 4 ;) such that

n

N
f@d.0)=>_>" M. 0, (23)

n=0 m=—n

where the function¥" are the surface harmonics and whépg, {0}, (&}, and{éj} are
appropriately chosen grid points (see [10] for details).
We modify only the core of the algorithm of [10], which performs the following one

dimensional filtering operation: given numbeir8(6,), ..., f™(9;) such that
J-1 _
f7@) =Y f"PM (i), i=1....J, (24)
j=m
compute number§™@,), ..., f™(@y) such that
N —
=> PTG, i=1....N, (25)
j=m

where the functionfjnrn are the normalized associated Legendre functigns; sing; and
fi; = sing;.

Due to the orthonormality of the functior’r'?_?}{1 for fixedm and integen > m, if the nodes
u1, ..., g are Legendre nodes (nodes of the Gaussian quadrature corresponding t
weight functionw (x) = 1, see, for instance, [14]), then the coefficieffg f . ..., f{
are given by

J
D= MO PR () w;, (26)
j=1

wherews, ..., wj € R are the Gaussian weights corresponding to the nades. ., ;.
Combining (25) and (26) yields an equation for the entire filtering operation:

i (9)—21‘ (9k>wk2 P™ () PT (/). 27)
j=m

Equation (27) constitutes a linear transformation frof(01), ..., T™(0;) to fm@o, ...,
f™(@n); we will refer to the matrix of this transformation as the filtering matrix and wi



604 YARVIN AND ROKHLIN

denote it byP. Using the Christoffel-Darboux formula for the associated Legendre functic
(see, for instance, [1, Section 8.9.1]), which is

N
(=) Y PRPIW = el (PR PR — PREDPNL W), (28)

n=[m|

where

eM = /(2 —m2)/(4n2 — 1), (29)

the filtering operation can be written as

™G = = FTEGWIPT) = o= PTG wi PR ()
=P )y N pin - . (30
el N”(M’)E i — i N(M')E = 9

From (30) it immediately can be seen that the filtering matrix consists of the sum of 1
matrices of the form (1), each multiplied on the left and the right by a diagonal mati
Thus, the filter can be implemented using two calls to an FMM for thekernel; this is
the method presented in [10] (from where the above analysis is copied). It also follows
if the generalized FMM of this paper is applied to the filtering matrix, the numerical rar
{ri}and{p;} (see (13) and (12)) are no more than twice the corresponding ranks when
generalized FMM is applied to a matrix of the form (1). Thus, the filter can be implemen
efficiently via a single call to the generalized FMM.

Remark 6.1. If N is larger thanJ, the operation (30) amounts to interpolation rathe
than filtering. If the output nod€gi; } are the Legendre nodes of order then the filtering
matrix from J nodes toN nodes is, except for the multiplication of the input by Gaussia
weights, the adjoint of the interpolation matrix frdkhnodes toJ nodes; this can easily be
seen by inspection of (30). Thus, the matrifieg, {Vi}, {Ti}, {M; }, and{E; ; }, precomputed
for the purpose of filtering, can also be used for interpolation (see Remark 3.1).

6.1. General Nodes

Ifthe nodesu, ..., uj are not Legendre nodes, then the coefficidfts. .., f{' cannot
be computed by direct use of the formula (26). In this case, two methods of performing
filtering operation are available. First, Eq. (24) can be solved for the coeffidi@nts ., f".
Alternatively, the function can be interpolated onto Legendre nodes, following which
filtering matrix for Legendre nodes (30) can be used. We use the second method to :
that the filtering matrix for general nodes can be compressed by the generalized FMM
used the first method in our implementation.

As is well known (see, for instance, [1]), each of the associated Legendre funBffons
is either a polynomial or a polynomial multiplied byl — x2, depending on whethen
is even or odd. Thus the interpolation onto Legendre nodes is a polynomial interpolat
which, ifmis odd, is preceded by a division kL — x2 and followed by a multiplication by
+/1— x2. As shown in [3], polynomial interpolation can be performeditn) time using
an FMM. The filtering matrix for general nodes is the product of the interpolation mat
and the filtering matrix for Legendre nodes; since each of these can be compressec
generalized FMM, their product also can be compressed by a generalized FMM (see
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Remark 6.2. In the solution of Eq. (24) for the coefficienfd, ..., ', whenm> 0,
there are more equations than unknowns. The definition of the problem is such that the
an exact solution; however, numerically, this issue was dealt with by solving the equa
in the least squares sense.

6.2. Optimizations

The above filtering algorithm admits several optimizations. We describe them only
the case when the nodes, ..., u; are Legendre nodes; however, all of them have al:
been implemented in the case of general nodes.

First, whenmiis close toN, the number of coefficient§" to be extracted is small; thus
direct computation of (26) followed by (25) is the most efficient algorithm for the filter.

Second, portions of the filtering matrix have negligible norm and can be discarded.
can be easily seen by examination of (30), using the fact that the fund¥Priske on
small values near the endpoints of the interval[1]. The fraction of the matrix which
can be discarded increases with increasmtp as much as eight ninths. This optimizatior
is clearly not specific to the generalized FMM; it can be applied equally well to the dir
method or to the unaltered algorithm of [10] and was applied to the direct method c
which was used in the timings presented below.

Third, the filter can be speeded up slightly by splitting the input function into odd a
even parts, and filtering them separately. Each of the associated Legendre fuRgtisns
either odd or even, with functions of successive degréeing alternately odd and then
even. Thus the filter, applied to an odd function, yields an odd function and, applie
an even function, yields an even function. This implies that the filtering matrix is bloc
diagonalized (into two blocks) by the separation of odd functions from even functions.
address only the case in which the separation can be done trivially, that is, when ea
the sets of node§u;} and{fi;} is symmetric around zero; for brevity of explanation, we
further assume that andJ are even. In this case the separation of odd functions from e\
functions is accomplished by the usual formulae

foaa(¥) = (f(x) = f(=x))/2, (31)
fevenX) = (f(X) + f(=X))/2, (32)

where, as usual, each of the functiofygq and feyenare symmetric around zero and, thus
need only be stored at half the nodes. It is easily shown, using (30) and (31), that ir
case that the nodgs,, ..., u; are Legendre nodes, each bIoIék:[f)ij] of the block-
diagonalized filtering matrix is given by

L PR () PRu)w — PRGL) PR () wi
! ﬂj — Mi
n PR () PR (uidwi + PRI} PR (i) wi
iy + i

: (33)

where, for the block which filters even functions, the"sign is an addition, and, for the
block which filters odd functions, it is a subtraction. An inspection of (33) immediate
shows that each block is compressible by a generalized FMM.
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Remark 6.3. Experimentally, the ranks produced by the generalized FMM when appl
to the block-diagonalized matrix are almost identical to the ranks produced when apy
to the original filtering matrix, except near the popnt= 0, where the ranks are slightly
smaller in the block-diagonalized version.

Remark 6.4. Since the generalized FMM is, when applied to matrices of this form,
O(n) procedure, splitting the problem into two problems of half the size does not prod
any asymptotic improvement in execution time, although it does produce an improver
for small to medium-sized. By contrast, applying this optimization to the direct metho
(as was done in the code used in the timings presented below) reduces the executior
by a factor of 2 asymptotically, since the direct metho®i®?).

6.3. Numerical Results

Table Il contains experimental results for the filter for functions tabulated at Legen
nodes. The filter was run for several valuesipvith N = J/2 and for eacim=1, ..., N;
the average initialization and execution times, the avetZgaror, and the average amount
of memory used for precomputed data (for all valuesmfare tabulated. The quantity
labeled as initialization time is, as before, the amount of time taken to compute the mati
which comprise the generalized FMM; this task only needs to be performed once for
combination ofJ and N, since the precomputed matrices can be stored. All figures we
produced by an implementation in double precision (FOre@kL*8) arithmetic on a Sun
Sparcstation 10. The table also contains the amount of time taken by the direct metho
the ratio of the execution time of the FMM-based filter to the execution time of a stand

TABLE 11l
Filter Timings for Points Tabulated at Legendre Nodes

Average time pem (seconds) for Average memory
Ratio: Average used
J Direct FMM eval FMM init evallFFT errorl(?) (REAL*8 spaces)
Requested accurady0—2

64 0.00014 0.00021 0.038 1.10 0.87216E-04 637
128 0.00059 0.00063 0.173 1.73 0.21141E-03 1814
256 0.00239 0.00172 0.861 2.25 0.35270E-03 4684
512 0.00916 0.00406 4.528 1.64 0.55393E-03 10586

1024 0.15601 0.00930 22.708 1.26 0.72021E-03 22799
Requested accurady0’

64 0.00016 0.00020 0.035 1.05 0.62995E-09 715
128 0.00069 0.00068 0.145 1.84 0.89805E-08 2351
256 0.00272 0.00199 0.749 2.61 0.20946E-07 7074
512 0.01015 0.00545 4.480 221 0.35158E-07 18763

1024 0.17623 0.01351 25.102 1.84 0.50011E-07 45001
Requested accurad0*?

64 0.00017 0.00018 0.035 0.97 0.64733E-13 712
128 0.00078 0.00070 0.118 1.88 0.36187E-12 2604
256 0.00312 0.00221 0.630 2.90 0.13528E-12 8496
512 0.01102 0.00656 3.752 2.64 0.30608E-12 26072

1024 0.19227 0.01763 26.347 2.37 0.14238E-11 66714
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SLATEC FFT of sizeJ. The direct method for which timings are listed is a modestl
optimized variant: the filtering matrix it used was precomputed; certain optimizations u
for the FMM-based method were also applied to it, as described in Section 6.2.

The filter was also implemented for functions tabulated at general nodes (Section
and was tested on Chebyshev nodes. The timings are almost identical, with the only r
difference being that considerably more time was required to compute the filtering ma
they are omitted.

Remark 6.5. The implausibly large CPU times taken by the direct method/fer1024
are the result of the problem size exceeding the size of the cache; on the machine on \
timings were run, only two double precision vectors of length 1024 fit in the data cac
Such a jump in timings is not expected to occur on most machines and, in any case, (
be eliminated by use of a blocked matrix—vector multiplication routine.

Figure 2 is a graph of the average numerical rank of interaction found by the filter
Legendre nodes (the average of the rafk$), plotted as a function ofi, for J = 1024 and
e =10712, (The ranks for the filter for arbitrary nodes, when applied to Chebyshev noc

0 1 1 Il 1 1

0 100 200 300 400 500

FIG. 2. Average numerical rank of interaction, as a functiompffor J = 1024 andce = 10722, The dashed
line is the theoretical bound on the rank.
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were nearly identical.) Also plotted in Fig. 2 is the theoretical upper bound for the aver
rank, that is, twice the average rank of an FMM for thi& kernel of the same accuracy.
Since most of the ranks were close to their average, the execution time of the FMI
roughly proportional to the average rank. (See Section 3.2.6 for an analysis of the ca
all ranks being equal; a similar analysis applies to other variants of the 1D FMM.) Tt
Fig. 2 provides a rough indication of the amount of speedup that is obtained by switct
from the scheme of [10] to the generalized FMM: to a first approximation, if the avere
rank were equal to its upper bound for &l| the two schemes would be of equal speec
to the extent that it is lower, the generalized FMM is faster. (However, it should be nc
that the generalized FMM requires more precomputed data and is, thus, more vulneral
caching effects.)

7. GENERALIZATIONS

In this paper, we have presented a scheme for the efficient filtering of functions on
two-dimensional sphere. The approach is based on two observations. The first obser
is that in the fast multipole method (see, for example, [3, 6]) potential kernels can
replaced with functions from a much more general class, using the standard singular \
decomposition, and that this yields afairly efficientimplementation. The second observe
is that the Christoffel-Darboux formula (28) provides a straightforward proof that t
filtering operator on the sphere (27) can be compressed by FMM-type techniques. |
observations admit far-reaching generalizations, outlined below.

1. The fast multipole method used in this paper is a special case of an extremely ge!
procedure. Particular versions of this procedure have been used repeatedly (see [11
it is effective in all situations when the operator can be compressed by wavelet technic
The following is a brief outline of the approach.

Given a matrix to be rapidly applied to arbitrary vectors, examine it (either analytice
or numerically), identifying large submatrices that are of low rank. When the coefficient:
a submatrix are a sufficiently smooth function of its indices, such a submatrix is guaran
to have a low rank (this is the environment where wavelets and wavelet-type technic
can be used); another frequently encountered situation involves submatrices that ar
smooth, but are smooth matrices multiplied by diagonal matrices from the left anc
from the right (as in the case of the filtering operator (30)). Any matrix whose rank
much lower than its dimensionality is “compressed” by its singular value decompositi
applying this procedure to a sufficiently large collection of submatrices of some matrix,
obtain a primitive “fast” algorithm for applying it to arbitrary vectors. The scheme is furth
accelerated by recursive application of this approach.

A strong argument can be made that the SVD of a matrix is its “optimal” low-ral
representation; in this sense, SVD-based implementations of FMM-type algorithms
“optimal.” Indeed, schemes have been constructed using the SVD to further comg
multipole expansions (see, for example, [3, 9]); the resulting procedures tend to be r
efficient than the original FMM. In addition, the FMM for potential kernels has been &
celerated (dramatically so, in higher dimensions) by using diagonal forms of transla
operators (see [7, 15]). Possible hybrid algorithms combining the latter with SVD-ba
compression of more general kernels are currently under investigation in one, two, and
dimensions.
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2. Formula (28) in the present paper is a special case of the well-known Christof
Darboux formula,

(34)

4 O Pora() - Pa(Y) = Prra(Y) - Pa(X)
k;pk(x) Pey) = o Yy :

where py are polynomials orthogonal withomeweight functionw on someinterval, g

is the coefficient at the term* in the polynomialpy, andn is an arbitrary positive in-
teger (see, for example, [5, Section 8.902]). It is immediately clear from (34) that
algorithm of this paper can be used to evaluate rapidly the projections in spaces of |
nomials on subspaces consisting of polynomials of reduced rank, in the norm assoc
with the weightw. There are a number of other projections that can be evaluated rap
using the FMM scheme of this paper, or its variants. The operators we have experime
with include projections on subspaces in the space of polynomials in two dimensi
projections on subspaces spanned by appropriately chosen Bessel functions, and s
others. In some cases, we have determined experimentally that the scheme works, bu
not constructed the underlying mathematics. This whole class of issues is currently u
investigation.
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