

JOURNAL OF COMPUTATIONAL PHYSICS147,594–609 (1998)
ARTICLE NO. CP986104

A Generalized One-Dimensional Fast Multipole
Method with Application to Filtering

of Spherical Harmonics1

Norman Yarvin2 and Vladimir Rokhlin

Department of Computer Science, Yale University, P.O. Box 208285 Yale Station,
New Haven, Connecticut 06520-8285

E-mail: yarvin@cs.yale.edu, rokhlin@cs.yale.edu

Received June 1, 1998; revised September 22, 1998

The need to filter functions defined on the sphere arises in a number of applications,
such as climate modeling, electromagnetic and acoustic scattering, and several other
areas. Recently, it has been observed that the problem of uniform resolution filtering
on the sphere can be performed efficiently via the fast multipole method (FMM) in
one dimension. In this paper, we introduce a generalization of the FMM that leads
to an accelerated version of the filtering process. Instead of multipole expansions,
the scheme uses special-purpose bases constructed via the singular value decompo-
sition of appropriately chosen submatrices of the filtering matrix. The algorithm is
applicable to a fairly wide class of projection operators; its performance is illustrated
with several numerical examples.c© 1998 Academic Press

Key Words:singular value decompositions; fast algorithms; spherical harmonics.

1. INTRODUCTION

The fast multipole method (FMM) [6] is anO(n) algorithm for calculating electrostatic
potentials atn points due to a set ofn charges. Variants of it exist in one [3, 15], two
[6, 9], and three [7] dimensions. While the two- and three-dimensional variants have found
direct uses, the one-dimensional version is normally used as a step in the solution of other
numerical problems (see, for example, [3]). One such use of the one-dimensional FMM
has recently been published by Jakob-Chien and Alpert [10], in an algorithm for the rapid
uniform resolution filtering and interpolation of functions on the sphere; that algorithm has
uses in the solution of partial differential equations on the sphere [13], in fast algorithms for

1 Supported in part by DARPA/AFOSR under Grant F49620-97-1-0011, and in part by ONR under Grant
N00014-96-1-0188.

2 Corresponding author.

594

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.

GENERALIZED 1D FMM AND SPHERICAL FILTER 595

electromagnetic scattering [4], and in several other environments. In this paper, we describe
a version of the one-dimensional FMM which has been generalized so as to calculate
not only electrostatic potentials, but a wide class of similar kernels, and we describe an
accelerated version of the algorithm of [10] in which two subroutine calls to the original
one-dimensional FMM are replaced by one call to the generalized FMM.

Formally, this paper describes an algorithm for the following task: given ann×m matrix
P of a certain structure and given a desired accuracyε, compressP so that its product with a
vector can be efficiently computed to that accuracy. The structure the algorithm requires of
P is as follows: there must exist numbersx1 < x2 < · · · < xm andy1 < y2 < · · · < yn such
that, roughly speaking, any submatrix ofP which is separated in index space from the line
xi = yj by a distance greater than its own size has a rank less than some (reasonably small)
numberr , to the precisionε; the CPU time taken by the algorithm for multiplication ofP
by a vector is thenO(nr). (A rigorous accounting of the execution time of the algorithm is
somewhat complicated and is given in Section 3.2.6.) One matrixP = [pi j] which has such
a structure is given by the formula

pi j = 1

yi − xj
(1)

and is the matrix whose multiplication by a vector is implemented by the original one-
dimensional versions of the FMM.

This paper is arranged as follows. Section 2 briefly reviews numerical tools used by the
algorithm. Section 3 describes the generalized FMM in its basic form. Section 4 describes
modifications to the algorithm of Section 3, the principal one of which is the diagonalization
of roughly a third of the interaction matrices. Section 5 contains numerical results for
the generalized FMM applied to the matrix (1). Section 6 describes modifications to the
algorithm of [10] which incorporate the generalized FMM. Finally, Section 7 examines
generalizations of the schemes presented in this paper.

2. NUMERICAL PRELIMINARIES

2.1. Singular Value Decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, given
for the case of real matrices by the following lemma (see, for instance, [14] for more details).

LEMMA 2.1. For any n× m real matrix A, there exist an integer p, an n× p real matrix
U with orthonormal columns, an m× p real matrix V with orthonormal columns, and a
p× p real diagonal matrix S= [si j] whose diagonal entries are nonnegative, such that
A=U SV∗ and that sii ≥ si +1,i +1 for all i = 1, . . . , p − 1.

The diagonal entriessii of S are called singular values ofA; the columns of the matrix
V are called right singular vectors; the columns of the matrixU are called left singular
vectors.

2.2. Least Squares Approximation

This section contains three lemmas on the least squares approximation of matrices, proven
in a more general setting in [15]. In this section and in the remainder of the paperRn,m will

596 YARVIN AND ROKHLIN

denote the space of all realn × m matrices, and the matrix norm used will be the Schur or
Frobenius norm; that is, for ann × m real matrixA= [ai j],

‖A‖ =
√√√√ n∑

i =1

m∑
j =1

a2
i j . (2)

LEMMA 2.2. Suppose A is a p× n real matrix, B is an m× k real matrix, and C
is a p× k real matrix, for some m, p, n, and k. Let A= ŨAS̃AṼ

∗
A be a singular value

decomposition of A, and let B= ŨBS̃BṼ
∗
B be a singular value decomposition of B. Let r

be the number of nonzero singular values of A, and let q be the number of nonzero singular
values of B. Let UA and VA consist of the first r columns of̃UA andṼA, respectively, and
let SA consist of the first r rows of the first r columns ofS̃A. Let UB and VB consist of the
first q columns ofŨB andṼB, respectively, and let SB consist of the first q rows of the first
q columns ofS̃B. Then the solution̂X of the minimization problem,

min
X∈Rn,m

‖AX B− C‖, (3)

is given by

X̂ = VAS−1
A U ∗

ACVBS−1
B U ∗

B. (4)

Furthermore,

‖AX̂ B − C‖ = ‖C − UAU ∗
ACVBV∗

B‖. (5)

The following lemma provides a bound, in certain situations, on the error of the approx-
imation given by Lemma 2.2.

LEMMA 2.3. Under the conditions of Lemma2.2, suppose that there exist an n× k
matrix D and an p× m matrix E such that

‖AD − C‖ < ε1 (6)

and

‖E B − C‖ < ε2. (7)

Then

‖AX̂ B − C‖ < ε1 + ε2. (8)

As shown by the following lemma, the error bound of Lemma 2.3 also applies when a
different formula for the minimizing matrix is used.

LEMMA 2.4. Under the conditions of Lemma2.3, let the n× m matrix Y be given by
the formula

Y = DVBS−1
B U ∗

B. (9)

Then

‖AY B− C‖ < ε1 + ε2. (10)

GENERALIZED 1D FMM AND SPHERICAL FILTER 597

3. BASIC FMM

This section describes the generalized FMM of this paper. It is described as a set of
modifications to the FMM of [6, 3]; the reader is assumed to be familiar with that algorithm.

The overall FMM structure of an upward pass for creation of far field expansions, fol-
lowed by a pass which computes local expansions from far field expansions, followed by
a downward pass which propagates local expansions to lower levels and evaluates them, is
retained. However, all the expansions are different, being based on singular value decompo-
sitions rather than on analytical formulae. In addition, the hierarchical subdivision scheme
is different, being performed according to matrix indices rather than according to point
locations. (The expansions used permit almost any subdivision scheme, whether adaptive
as in [15], or nonadaptive as in [3]; the present scheme was chosen solely for its simplicity.)

3.1. Subdivision Scheme

The hierarchical subdivision is performed on column indices of the matrixP, as follows:

• Each interval of column indices, if it is divided, is divided into two intervals of equal
size (or differing in size by one, if the number of indices in the interval is odd).

• The subdivision is uniform; either all the intervals at any given depth of the tree are
subdivided, or none are.

• The subdivision process continues until the lowest-level intervals are as close as pos-
sible to a user-chosen size.

For each interval [j1, j2] of column indices produced by the above process, a correspond-
ing interval [i1, i2] of row indices is chosen such that the portion ofP addressed by the two
intervals of indices contains as much as possible of the linexi = yj . The precise criterion
used to choose the interval [i1, i2] is that it should be the interval of maximal size such that

(
xj1−1 + xj1

)/
2 ≤ yi1 < · · · < yi2 <

(
xj2 + xj2+1

)/
2. (11)

(If xj1−1 or xj2+1 does not exist, the corresponding inequality in the above equation is not
enforced. The quantitiesx1 < x2 < · · · < xm and y1 < y2 < · · · < yn were, in the present
implementation, user-provided; in an environment where they are not readily available, they
can be determined by numerically searchingP for areas of high numerical rank.)

3.2. Expansions

This section describes the expansions used in the generalized FMM. Submatrices ofP
will be designated as follows:Pa,b denotes the portion ofP whose column indices are inb
and whose row indices are ina, wherea andb are either intervals of indices intoP, or sets
thereof.

For each interval, the FMM divides the intervals at the same depth in the tree into two
sets:

• 1. Thenear fieldregion, consisting of the interval itself and the two adjacent intervals
at the same depth in the tree of intervals.

• 2. Thefar field region, consisting of all remaining intervals at the same depth in the
tree. We denote the far field region of thei ’th interval by Fi .

598 YARVIN AND ROKHLIN

A third set is also required: theinteraction listof an intervali is the set of intervals at the
same depth in the tree which are in the far field ofi and which are not in the far field of the
parent ofi .

3.2.1. Far-field expansions.The original FMM [6] relies on the fact that the electrostatic
potential due to a set of charges can be represented to high precision, at points distant from
those charges, by a multipole expansion of relatively few terms. In the generalized FMM
described in this paper, the output (no longer necessarily the electrostatic potential, although
we will continue to use the terms “potential” and “charge” for convenience) does not need to
be describable by a multipole expansion, but can be describable by an arbitrary expansion,
provided that the expansion coefficients are linear functions of the charge magnitudes
and that the potential is a linear function of the expansion coefficients. The creation and
evaluation matrices for this expansion, which we will call a far-field expansion, do not need
to be furnished as such by the user; they are computed from the matrixP using the singular
value decomposition. This computation is performed for each intervali for which a far-field
expansion is needed and is as follows: Letni × mi be the dimensions of the matrixPFi ,i ,
let the singular value decomposition ofPFi ,i be denoted bỹU S̃Ṽ

∗
, the number of singular

values byp̃, and the singular values bys1 ≥ s2 ≥ · · · ≥ sp̃. Let pi be the minimum integer
such that

p̃∑
j =pi +1

s2
j < ε2‖P‖2 ni mi

nm
. (12)

Let themi × pi matrix Vi consist of the firstpi columns ofṼ and let thepi × ni matrix
Ei consist of the firstpi columns of the product̃U S̃. We will refer toV∗

i as the far-field
expansion creation matrix for intervali and toEi as the far-field evaluation matrix; the latter
is not used explicitly in the algorithm.

As shown in [8], the productEi V
∗
i is, among matrices of rankpi , the closest approxima-

tion to the matrixPFi ,i in the norm (2). Thus the number of terms in any known expansion
for PFi ,i (such as a multipole expansion) is an upper bound for the number of termspi in
the far-field expansion of the same accuracy computed as above.

3.2.2. Local expansions.Using far-field expansions alone, anO(n · logn) version of
the FMM can be produced (for an overview of the various versions see [7]). TheO(n)

version of the FMM requires additional numerical machinery, namely local expansions,
which approximate the potential on a region due to charges on distant regions. In the original
FMM, local expansions were harmonic expansions; in the generalized FMM, creation and
evaluation matrices for local expansions are computed from the matrixP using the singular
value decomposition, as follows. Letn′

i × m′
i be the dimensions of the matrixPi,Fi ; let the

singular value decomposition ofPi,Fi be denoted bỹU S̃Ṽ
∗
, the number of singular values

by r̃ , and the singular values bys1 ≥ s2 ≥ · · · ≥ sr̃ . Let ri be the minimum integer such that

r̃∑
j =ri +1

s2
j < ε2‖P‖2 n′

i m
′
i

nm
. (13)

Let them′
i × ri matrix Ui consist of the firstri columns ofŨ . We will refer toUi as the

local expansion evaluation matrix for intervali .

GENERALIZED 1D FMM AND SPHERICAL FILTER 599

3.2.3. Far-field translation matrices.The FMM does not compute far-field expansions
for intervals at high levels in the tree directly from the charges in the interval, but rather
computes them from far-field expansions at lower levels. Associated with each intervali
whose parent intervalj has a far-field expansion is a translation matrixTi which takes as
input a far-field expansion fori and produces as output a far-field expansion forj which
evaluates to the same potential. LetV∗

i be the far-field creation matrix for intervali , and
let V∗

j,i be the far field creation matrix for intervalj , with columns deleted such that it
only accepts input from the intervali . Clearly the translation matrixTi should be such that
for any mi -vectorq, the vectorTi V

∗
i q is as close as possible, by some measure, to the

vectorV∗
j,i q. The measure we use is the least squares measure; in particular,Ti is chosen

so as to minimize the quantity‖V∗
j,i − Ti V∗

i ‖. The formula for such minimization is given
by Lemma 2.2; using the fact that the singular value decomposition of any matrix with
orthogonal columns consists of that matrix multiplied by two identity matrices, it reduces
in this case to

Ti = V∗
j,i Vi . (14)

We will refer toTi as the far-field expansion translation matrix for intervali .
Lemma 2.4 gives a bound for the error associated with using the translation matrixTi .

SupposeEj,k andEi,k are matrices which take as input the far-field expansions on intervalj
and on intervali , respectively, and use them to evaluate the potential on some other interval
k and are such that

‖Pi,k − Ej,kV∗
j,i ‖ < ε1 (15)

‖Pi,k − Ei,kV∗
i ‖ < ε2. (16)

Using (15), (16), and Lemma 2.4, we get that

‖Pi,k − Ej,kTi V
∗
i ‖ < ε1 + ε2. (17)

3.2.4. Local expansion translation matrices.The FMM does not evaluate local expan-
sion for intervals at high levels in the tree directly at each of the points at which the potential
is to be evaluated, but rather transforms them into local expansions for intervals at lower
levels. Associated with each intervali , whose parent intervalj has a local expansion, is a
translation matrixMi which takes as input a local expansion onj and produces as output a
local expansion oni . Mi is computed as follows. LetUi be the local expansion evaluation
matrix for intervali , and letU j,i be the local expansion evaluation matrix for intervalj ,
with rows deleted so that it only produces output on the intervali . Clearly the translation
matrix Mi should be such that for anyri -vectorα, the vectorUi Mi α is as close as possible,
by some measure, to the vectorU j,i α. The measure we use is the least squares measure; in
particular,Mi is chosen so as to minimize the quantity‖Uj,i −Ui Mi ‖. The formula for such
minimization is given by Lemma 2.2. Using the fact that the singular value decomposition
of any matrix with orthogonal columns consists of that matrix multiplied by two identity
matrices, it reduces in this case to

Mi = U ∗
i U j,i . (18)

600 YARVIN AND ROKHLIN

The error incurred by usingMi is bounded by Lemma 2.4; the analysis is almost identical
to that presented in Section 3.2.3 for the far-field translation matrixTi and is omitted. We
will refer to Mi as the local expansion translation matrix for intervali .

3.2.5. Far-field to local interaction matrices.A far-field to local interaction matrixEj,i

takes as input a far-field expansion on an intervali and produces as output a local expansion
on another intervalj . Such matrices are constructed only for pairs of intervals(i, j) such
that j is in the interaction list ofi . The matrixEj,i should be such that for allmi -vectorsq
the productU j Ej,i V∗

i q is as close as possible, by some measure, to the productPj,i q. We
chooseEj,i so as to minimize the quantity

ε j,i = ‖U j Ej,i V
∗
i − Pj,i ‖. (19)

The formula for such minimization is given by Lemma 2.2; using the fact that the sin-
gular value decomposition of any matrix with orthogonal columns consists of that matrix
multiplied by two identity matrices, it reduces in this case to

Ej,i =U ∗
j Pj,i Vi . (20)

Lemma 2.3, combined with (12) and (13), gives a bound forε j,i :

ε j,i < ε‖P‖
(√

ni mi

nm
+

√
n′

i m
′
i

nm

)
. (21)

We will refer to Ej,i as the far field to local interaction matrix from intervali to interval j .

Remark 3.1. A brief inspection of the above formulae for the creation, translation,
and evaluation matrices{Ui }, {Vi }, {Ti }, {Mi }, and{Ej,i } shows that the same matrices
are generated, in different roles, if the input matrix to the algorithm is the adjointP∗ of
P, provided that the hierarchical subdivision is retained: the far field expansion creation
matrices forP are identical to the local expansion evaluation matrices forP∗, and vice
versa; the far field translation matrices forP are identical to the local expansion translation
matrices forP∗, and vice versa; and the far field to local matrices forP are the adjoints of
the far field to local matrices forP∗. Thus the matrices precomputed forP can also be used
for multiplying by P∗.

3.2.6. Execution time.The FMM performs one matrix–vector multiplication for each
instance of the matrices{Ui }, {Vi }, {Ti }, {Mi }, and{Ej,i }. Thus the CPU time which it con-
sumes is proportional to the total number of elements in all instances of the matrices. The
sizes of the matrices depend on the numerical rankspi andri , as defined by (12) and (13).
We analyze the execution time further only in the case that all those ranks are all bounded
by some numberr . In that case, the computation of far-field expansions from the input takes
O(mr) time, the computation of the output from local expansions takesO(nr) time, and the
computations of expansions from other expansions takeO(kr2) time, wherek is the total
number of intervals produced by the subdivision process. Assuming thatm is proportional to
n, the total execution time isO(nr + kr2). The quantitynr + kr2 is minimized (with respect
tok) whenn/k is equal tor . Sincen/k is proportional to the size of the lowest-level intervals,
the minimum execution time occurs when the size of the lowest-level intervals is propor-
tional tor , with the constant of proportion depending on the details of the computer involved.

GENERALIZED 1D FMM AND SPHERICAL FILTER 601

4. TECHNICAL IMPROVEMENTS

4.1. Diagonalization of Far Field to Local Matrices

A certain amount of freedom is present in the definition of far field and local expansions:
the results of the FMM are clearly unaffected if the far-field expansion creation matrixV∗

i

for an intervali is multiplied on the left by any orthogonal matrixW, its far field translation
matrixTi is multiplied on the right byW∗, and its far field to local matricesEj,i for all j are
multiplied on the right byW∗. Similarly, the results of the FMM are unaffected if the local
expansion evaluation matrixUi for an intervali is multiplied on the right by any orthogonal
matrix W, its local expansion translation matrixMi is multiplied on the left byW∗, and its
far field to local matricesEi, j for all j are multiplied on the left byW∗.

We use this freedom to diagonalize one of the (usually three) far field to local matrices for
each interval. Suppose thatEi, j for some intervalsi and j is the matrix to be diagonalized.
Let its singular value decomposition be denoted byEi, j =U SV∗. Then we multiplyV∗

j on
the right byV∗, and multiplyUi on the left byU , also changing translation matrices and
far field to local matrices as indicated in the previous paragraph so that the results of the
FMM are unaffected.

Far field to local matrices are chosen for diagonalization in such a way that each expansion
redefined by this process is redefined only once. The scheme used is as follows: each level of
intervals is divided into blocks of four adjacent intervals; inside each block the interactions
chosen for diagonalization are: 1→ 3, 2→ 4, 3→ 1, and 4→ 2 (as depicted in Fig. 1).

4.2. Splits by Factors Other Than Two

Another modification which was made to the above FMM is to split intervals into more
than two pieces. This clearly can be done to any interval, at any level in the tree. However,
the only use which was made of this flexibility was to alter the top of the tree of intervals
slightly, so as to control better the size of the lowest-level intervals in the tree. The top
interval was split either into two, three, or five pieces; if three, its subintervals might each

FIG. 1. Far field to local operators which are diagonalized.

602 YARVIN AND ROKHLIN

TABLE I

Double Precision Timings for the 1/x Kernel

Times (seconds) Memory
Error Ratio (REAL*8

N (L2 norm) Init Eval Direct eval/FFT spaces)

64 0.35477E-15 0.070 0.001 0.001 5.21 3852
128 0.92042E-15 0.820 0.003 0.005 7.31 10407
256 0.23512E-14 6.620 0.007 0.019 8.93 26205
512 0.16144E-13 39.700 0.013 0.073 5.60 52263

1024 0.21925E-13 214.710 0.031 0.730 4.16 117881

be split into three parts, the remaining intervals in the tree all being split into two parts. This
permits a choice of the size of the lowest-level intervals not only ofn/2k for anyk, but also
of n/(3 × 2k), n/(5 × 2k), or n/(9 × 2k).

5. NUMERICAL RESULTS

For comparison against the older one-dimensional FMMs of [3, 15], the generalized
FMM was applied to the 1/x kernel; that is, the input matrixP = [pi j] was given by (1).
Timings for various numbers of pointsn are listed in Tables I and II for double and single
precision (that is, with the parameterε set to 10−14 and 10−7). In all cases, the parameter
m was set to be equal ton, the nodes{xi } were identical to the nodes{yi }, being slightly
perturbed equispaced nodes. All timings were performed on a Sun Sparcstation 10 in double
precision (FortranREAL*8) arithmetic. Also included in the tables are ratios of the execution
time of the algorithm to the execution time of a standard SLATEC FFT of sizen.

From the timings, it can be seen that the generalized FMM is similar in execution speed
to the best previous 1D FMM (that of [15]) known to the authors. It is, however, far inferior
to the FMMs of [3, 15] in the time spent in the precomputation stage; initialization times
for those algorithms did not exceed execution time by more than a factor of 10, whereas the
initialization time for the generalized FMM exceeds the execution time by factors of 1000s.
Effectively, it limits the usefulness of the procedure of this paper to problems of sufficient
importance that the initialization data can be precomputed and stored. The following section
discusses one such case.

TABLE II

Single Precision Timings for the 1/x Kernel

Times (seconds) Memory
Error Ratio (REAL*8

N (L2 norm) Init Eval Direct eval/FFT spaces)

64 0.25040E-08 0.040 0.001 0.001 4.74 3500
128 0.23352E-07 0.440 0.002 0.005 5.90 8465
256 0.19125E-06 3.580 0.005 0.018 6.13 17803
512 0.64886E-06 22.710 0.010 0.074 4.03 36911

1024 0.28910E-06 124.690 0.021 0.590 2.77 79407

GENERALIZED 1D FMM AND SPHERICAL FILTER 603

6. APPLICATION TO FILTERING

This section describes a use of the generalized FMM, in an algorithm recently pub-
lished by Jakob-Chien and Alpert [10] for uniform resolution filtering of functions on the
sphere. Their algorithm as a whole performs the following task: given numbersf (φi , θ j),
i = 1, . . . , I ; j = 1, . . . , J, such that

f (φi , θ j) =
K∑

n=0

n∑
m=−n

f m
n Ym

n (φi , θ j), (22)

computes numbers̃f (φ̃i , θ̃ j) such that

f̃ (φ̃i , θ̃ j) =
N∑

n=0

n∑
m=−n

f m
n Ym

n (φ̃i , θ̃ j), (23)

where the functionsYm
n are the surface harmonics and where{φi }, {θ j }, {φ̃i }, and{θ̃ j } are

appropriately chosen grid points (see [10] for details).
We modify only the core of the algorithm of [10], which performs the following one-

dimensional filtering operation: given numbersf m(θ1), . . . , f m(θJ) such that

f m(θi) =
J−1∑
j =m

f m
j P̄m

j (µi), i = 1, . . . , J, (24)

compute numbers̃f m(θ̃1), . . . , f̃ m(θ̃ N) such that

f̃ m(θ̃ i) =
N∑

j =m

f m
j P̄m

j (µ̃i), i = 1, . . . , N, (25)

where the functions̄Pm
n are the normalized associated Legendre functions,µi = sinθi and

µ̃i = sinθ̃ i .
Due to the orthonormality of the functions̄Pm

n for fixedm and integern ≥ m, if the nodes
µ1, . . . , µJ are Legendre nodes (nodes of the Gaussian quadrature corresponding to the
weight functionω(x) = 1; see, for instance, [14]), then the coefficientsf m

m , f m
m+1, . . . , f m

N

are given by

f m
n =

J∑
j =1

f m(θ j)P̄m
n (µ j)w j , (26)

wherew1, . . . , wJ ∈R are the Gaussian weights corresponding to the nodesµ1, . . . , µJ .
Combining (25) and (26) yields an equation for the entire filtering operation:

f̃ m(θ̃ i) =
J∑

k=1

f m(θk)wk

N∑
j =m

P̄m
j (µk)P̄m

j (µ̃i). (27)

Equation (27) constitutes a linear transformation fromf m(θ1), . . . , f m(θJ) to f̃ m(θ̃1), . . . ,

f̃ m(θ̃ N); we will refer to the matrix of this transformation as the filtering matrix and will

604 YARVIN AND ROKHLIN

denote it byP. Using the Christoffel–Darboux formula for the associated Legendre functions
(see, for instance, [1, Section 8.9.1]), which is

(µ̃ − µ)

N∑
n=|m|

P̄m
n (µ̃)P̄m

n (µ) = εm
N+1

(
P̄m

N+1(µ̃)P̄m
N(µ) − P̄m

N(µ̃)P̄m
N+1(µ)

)
, (28)

where

εm
n =

√
(n2 − m2)/(4n2 − 1), (29)

the filtering operation can be written as

f̃ m(θ̃ j)

εm
N+1

= P̄m
N+1(µ̃ j)

J∑
i =1

f m(θi)wi P̄m
N(µi)

µ̃ j − µi
− P̄m

N(µ̃ j)

J∑
i =1

f m(θi)wi P̄m
N+1(µi)

µ̃ j − µi
. (30)

From (30) it immediately can be seen that the filtering matrix consists of the sum of two
matrices of the form (1), each multiplied on the left and the right by a diagonal matrix.
Thus, the filter can be implemented using two calls to an FMM for the 1/x kernel; this is
the method presented in [10] (from where the above analysis is copied). It also follows that,
if the generalized FMM of this paper is applied to the filtering matrix, the numerical ranks
{r i } and{pi } (see (13) and (12)) are no more than twice the corresponding ranks when the
generalized FMM is applied to a matrix of the form (1). Thus, the filter can be implemented
efficiently via a single call to the generalized FMM.

Remark 6.1. If N is larger thanJ, the operation (30) amounts to interpolation rather
than filtering. If the output nodes{µ̃i } are the Legendre nodes of orderN, then the filtering
matrix from J nodes toN nodes is, except for the multiplication of the input by Gaussian
weights, the adjoint of the interpolation matrix fromN nodes toJ nodes; this can easily be
seen by inspection of (30). Thus, the matrices{Ui }, {Vi }, {Ti }, {Mi }, and{Ej,i }, precomputed
for the purpose of filtering, can also be used for interpolation (see Remark 3.1).

6.1. General Nodes

If the nodesµ1, . . . , µJ are not Legendre nodes, then the coefficientsf m
m , . . . , f m

N cannot
be computed by direct use of the formula (26). In this case, two methods of performing the
filtering operation are available. First, Eq. (24) can be solved for the coefficientsf m

m , . . . , f m
J .

Alternatively, the function can be interpolated onto Legendre nodes, following which the
filtering matrix for Legendre nodes (30) can be used. We use the second method to show
that the filtering matrix for general nodes can be compressed by the generalized FMM; we
used the first method in our implementation.

As is well known (see, for instance, [1]), each of the associated Legendre functionsPm
n

is either a polynomial or a polynomial multiplied by
√

1 − x2, depending on whetherm
is even or odd. Thus the interpolation onto Legendre nodes is a polynomial interpolation,
which, if m is odd, is preceded by a division by

√
1 − x2 and followed by a multiplication by√

1 − x2. As shown in [3], polynomial interpolation can be performed inO(n) time using
an FMM. The filtering matrix for general nodes is the product of the interpolation matrix
and the filtering matrix for Legendre nodes; since each of these can be compressed by a
generalized FMM, their product also can be compressed by a generalized FMM (see [2]).

GENERALIZED 1D FMM AND SPHERICAL FILTER 605

Remark 6.2. In the solution of Eq. (24) for the coefficientsf m
m , . . . , f m

N , whenm> 0,
there are more equations than unknowns. The definition of the problem is such that there is
an exact solution; however, numerically, this issue was dealt with by solving the equation
in the least squares sense.

6.2. Optimizations

The above filtering algorithm admits several optimizations. We describe them only for
the case when the nodesµ1, . . . , µJ are Legendre nodes; however, all of them have also
been implemented in the case of general nodes.

First, whenm is close toN, the number of coefficientsf m
j to be extracted is small; thus

direct computation of (26) followed by (25) is the most efficient algorithm for the filter.
Second, portions of the filtering matrix have negligible norm and can be discarded. This

can be easily seen by examination of (30), using the fact that the functionsPm
n take on

small values near the endpoints of the interval [−1, 1]. The fraction of the matrix which
can be discarded increases with increasingm, to as much as eight ninths. This optimization
is clearly not specific to the generalized FMM; it can be applied equally well to the direct
method or to the unaltered algorithm of [10] and was applied to the direct method code
which was used in the timings presented below.

Third, the filter can be speeded up slightly by splitting the input function into odd and
even parts, and filtering them separately. Each of the associated Legendre functionsPm

n is
either odd or even, with functions of successive degreen being alternately odd and then
even. Thus the filter, applied to an odd function, yields an odd function and, applied to
an even function, yields an even function. This implies that the filtering matrix is block-
diagonalized (into two blocks) by the separation of odd functions from even functions. We
address only the case in which the separation can be done trivially, that is, when each of
the sets of nodes{µi } and{µ̃i } is symmetric around zero; for brevity of explanation, we
further assume thatN andJ are even. In this case the separation of odd functions from even
functions is accomplished by the usual formulae

fodd(x) = (f (x) − f (−x))/2, (31)

feven(x) = (f (x) + f (−x))/2, (32)

where, as usual, each of the functionsfodd and fevenare symmetric around zero and, thus,
need only be stored at half the nodes. It is easily shown, using (30) and (31), that in the
case that the nodesµ1, . . . , µJ are Legendre nodes, each blockP̂ = [p̂i j] of the block-
diagonalized filtering matrix is given by

p̂i j = P̄m
N+1(µ̃ j)P̄m

N(µi)wi − P̄m
N(µ̃ j)P̄m

N+1(µi)wi

µ̃ j − µi

± P̄m
N+1(µ̃ j)P̄m

N(µi)wi + P̄m
N(µ̃ j)P̄m

N+1(µi)wi

µ̃ j + µi
, (33)

where, for the block which filters even functions, the “±” sign is an addition, and, for the
block which filters odd functions, it is a subtraction. An inspection of (33) immediately
shows that each block is compressible by a generalized FMM.

606 YARVIN AND ROKHLIN

Remark 6.3. Experimentally, the ranks produced by the generalized FMM when applied
to the block-diagonalized matrix are almost identical to the ranks produced when applied
to the original filtering matrix, except near the pointµ = 0, where the ranks are slightly
smaller in the block-diagonalized version.

Remark 6.4. Since the generalized FMM is, when applied to matrices of this form, an
O(n) procedure, splitting the problem into two problems of half the size does not produce
any asymptotic improvement in execution time, although it does produce an improvement
for small to medium-sizedn. By contrast, applying this optimization to the direct method
(as was done in the code used in the timings presented below) reduces the execution time
by a factor of 2 asymptotically, since the direct method isO(n2).

6.3. Numerical Results

Table III contains experimental results for the filter for functions tabulated at Legendre
nodes. The filter was run for several values ofJ, with N = J/2 and for eachm= 1, . . . , N;
the average initialization and execution times, the averageL2 error, and the average amount
of memory used for precomputed data (for all values ofm) are tabulated. The quantity
labeled as initialization time is, as before, the amount of time taken to compute the matrices
which comprise the generalized FMM; this task only needs to be performed once for any
combination ofJ andN, since the precomputed matrices can be stored. All figures were
produced by an implementation in double precision (FortranREAL*8) arithmetic on a Sun
Sparcstation 10. The table also contains the amount of time taken by the direct method and
the ratio of the execution time of the FMM-based filter to the execution time of a standard

TABLE III

Filter Timings for Points Tabulated at Legendre Nodes

Average time perm (seconds) for Average memory
Ratio: Average used

J Direct FMM eval FMM init eval/FFT error (L2) (REAL*8 spaces)

Requested accuracy10−3

64 0.00014 0.00021 0.038 1.10 0.87216E-04 637
128 0.00059 0.00063 0.173 1.73 0.21141E-03 1814
256 0.00239 0.00172 0.861 2.25 0.35270E-03 4684
512 0.00916 0.00406 4.528 1.64 0.55393E-03 10586

1024 0.15601 0.00930 22.708 1.26 0.72021E-03 22799

Requested accuracy10−7

64 0.00016 0.00020 0.035 1.05 0.62995E-09 715
128 0.00069 0.00068 0.145 1.84 0.89805E-08 2351
256 0.00272 0.00199 0.749 2.61 0.20946E-07 7074
512 0.01015 0.00545 4.480 2.21 0.35158E-07 18763

1024 0.17623 0.01351 25.102 1.84 0.50011E-07 45001

Requested accuracy10−12

64 0.00017 0.00018 0.035 0.97 0.64733E-13 712
128 0.00078 0.00070 0.118 1.88 0.36187E-12 2604
256 0.00312 0.00221 0.630 2.90 0.13528E-12 8496
512 0.01102 0.00656 3.752 2.64 0.30608E-12 26072

1024 0.19227 0.01763 26.347 2.37 0.14238E-11 66714

GENERALIZED 1D FMM AND SPHERICAL FILTER 607

SLATEC FFT of sizeJ. The direct method for which timings are listed is a modestly
optimized variant: the filtering matrix it used was precomputed; certain optimizations used
for the FMM-based method were also applied to it, as described in Section 6.2.

The filter was also implemented for functions tabulated at general nodes (Section 6.1)
and was tested on Chebyshev nodes. The timings are almost identical, with the only major
difference being that considerably more time was required to compute the filtering matrix;
they are omitted.

Remark 6.5. The implausibly large CPU times taken by the direct method forJ = 1024
are the result of the problem size exceeding the size of the cache; on the machine on which
timings were run, only two double precision vectors of length 1024 fit in the data cache.
Such a jump in timings is not expected to occur on most machines and, in any case, could
be eliminated by use of a blocked matrix–vector multiplication routine.

Figure 2 is a graph of the average numerical rank of interaction found by the filter for
Legendre nodes (the average of the ranks{pi }), plotted as a function ofm, for J = 1024 and
ε = 10−12. (The ranks for the filter for arbitrary nodes, when applied to Chebyshev nodes,

FIG. 2. Average numerical rank of interaction, as a function ofm, for J = 1024 andε = 10−12. The dashed
line is the theoretical bound on the rank.

608 YARVIN AND ROKHLIN

were nearly identical.) Also plotted in Fig. 2 is the theoretical upper bound for the average
rank, that is, twice the average rank of an FMM for the 1/x kernel of the same accuracy.
Since most of the ranks were close to their average, the execution time of the FMM is
roughly proportional to the average rank. (See Section 3.2.6 for an analysis of the case of
all ranks being equal; a similar analysis applies to other variants of the 1D FMM.) Thus,
Fig. 2 provides a rough indication of the amount of speedup that is obtained by switching
from the scheme of [10] to the generalized FMM: to a first approximation, if the average
rank were equal to its upper bound for allm, the two schemes would be of equal speed;
to the extent that it is lower, the generalized FMM is faster. (However, it should be noted
that the generalized FMM requires more precomputed data and is, thus, more vulnerable to
caching effects.)

7. GENERALIZATIONS

In this paper, we have presented a scheme for the efficient filtering of functions on the
two-dimensional sphere. The approach is based on two observations. The first observation
is that in the fast multipole method (see, for example, [3, 6]) potential kernels can be
replaced with functions from a much more general class, using the standard singular value
decomposition, and that this yields a fairly efficient implementation. The second observation
is that the Christoffel–Darboux formula (28) provides a straightforward proof that the
filtering operator on the sphere (27) can be compressed by FMM-type techniques. Both
observations admit far-reaching generalizations, outlined below.

1. The fast multipole method used in this paper is a special case of an extremely general
procedure. Particular versions of this procedure have been used repeatedly (see [11, 12]);
it is effective in all situations when the operator can be compressed by wavelet techniques.
The following is a brief outline of the approach.

Given a matrix to be rapidly applied to arbitrary vectors, examine it (either analytically
or numerically), identifying large submatrices that are of low rank. When the coefficients of
a submatrix are a sufficiently smooth function of its indices, such a submatrix is guaranteed
to have a low rank (this is the environment where wavelets and wavelet-type techniques
can be used); another frequently encountered situation involves submatrices that are not
smooth, but are smooth matrices multiplied by diagonal matrices from the left and/or
from the right (as in the case of the filtering operator (30)). Any matrix whose rank is
much lower than its dimensionality is “compressed” by its singular value decomposition;
applying this procedure to a sufficiently large collection of submatrices of some matrix, we
obtain a primitive “fast” algorithm for applying it to arbitrary vectors. The scheme is further
accelerated by recursive application of this approach.

A strong argument can be made that the SVD of a matrix is its “optimal” low-rank
representation; in this sense, SVD-based implementations of FMM-type algorithms are
“optimal.” Indeed, schemes have been constructed using the SVD to further compress
multipole expansions (see, for example, [3, 9]); the resulting procedures tend to be more
efficient than the original FMM. In addition, the FMM for potential kernels has been ac-
celerated (dramatically so, in higher dimensions) by using diagonal forms of translation
operators (see [7, 15]). Possible hybrid algorithms combining the latter with SVD-based
compression of more general kernels are currently under investigation in one, two, and three
dimensions.

GENERALIZED 1D FMM AND SPHERICAL FILTER 609

2. Formula (28) in the present paper is a special case of the well-known Christoffel–
Darboux formula,

n∑
k=0

pk(x) · pk(y) = qn

qn+1
· pn+1(x) · pn(y) − pn+1(y) · pn(x)

x − y
, (34)

where pk are polynomials orthogonal withsomeweight functionw on someinterval,qk

is the coefficient at the termxk in the polynomialpk, andn is an arbitrary positive in-
teger (see, for example, [5, Section 8.902]). It is immediately clear from (34) that the
algorithm of this paper can be used to evaluate rapidly the projections in spaces of poly-
nomials on subspaces consisting of polynomials of reduced rank, in the norm associated
with the weightw. There are a number of other projections that can be evaluated rapidly
using the FMM scheme of this paper, or its variants. The operators we have experimented
with include projections on subspaces in the space of polynomials in two dimensions,
projections on subspaces spanned by appropriately chosen Bessel functions, and several
others. In some cases, we have determined experimentally that the scheme works, but have
not constructed the underlying mathematics. This whole class of issues is currently under
investigation.

REFERENCES

1. M. Abramowitz and I. Stegun,Handbook of Mathematical Functions, Appl. Math. Ser. (Natl Bureau of
Standards, Washington, DC, 1964).

2. B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, Wavelet-like bases for the fast solution of second-kind
integral equations,SIAM J. Sci. Comput.14(1), 159 (1993).

3. A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation,
SIAM J. Numer. Anal.33(5), (1996).

4. M. A. Epton and B. Dembart, Multipole translation theory for the three-dimensional Laplace and Helmholtz
equations,SIAM J. Sci. Comput.16(4), 865 (1995).

5. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, 5th ed. (Academic Press, New
York, 1994).

6. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,J. Comput. Phys.73(2), 325 (1987).

7. L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three
dimensions,Acta Numer.229 (1997).

8. V. H. Golub and C. H. Van Loan,Matrix Computations(Johns Hopkins Univ. Press, Baltimore, 1983).

9. T. Hrycak and V. Rokhlin,An Improved Fast Multipole Algorithm for Potential Fields, Research Report 1089,
Computer Science Department, Yale, 1995.

10. R. Jakob-Chien and B. Alpert, A fast spherical filter with uniform resolution,J. Comput. Phys.136(2), 580
(1997).

11. S. Kapur and D. E. Long, IES3: A fast integral equation solver for efficient 3-dimensional extraction, in37th
International Conference on Computer Aided Design, Nov. 1997.

12. S. Kapur, D. E. Long, and J. Zhao, Efficient full-wave simulation in layered, lossy media, inProceedings of
the IEEE Custom Integrated Circuits Conference, May 1998.

13. S. A. Orszag, Fourier series on spheres,Mon. Weather Rev.102, 56 (1974).

14. J. Stoer and R. Bulirsch,Introduction to Numerical Analysis, 2nd ed. (Springer-Verlag, New York/Berlin,
1993).

15. N. Yarvin and V. Rokhlin, An improved fast multipole algorithm for potential fields on the line,SIAM
J. Numer. Anal., to appear.

